Make sense of problems and persevere in solving them.

EXPLAIN the problem to myself.

MAKE A PLAN to solve the problem

- What is the question?
- What do I know?
- What do I need to find out?
- What tools/strategies will I use?

When presented with a problem, I can make a plan, carry out my plan, and check its success.

PERSEVERE (Stick to it!)
MONITOR my work
ASK myself, "Does this make sense?"

CHANGE my plan if it isn't working out

CHECK

- Is my answer correct?
- How do my representations connect to my solution?

EVALUATE

- What worked/didn't work?
- How was my solution similar or different from my classmates'?

Reason abstractly and quantitatively.

I can use numbers, words, and

 reasoning habits to help me make sense of problems.Contextualize

$$
\frac{1}{2} \times 6=3 \text { or } 6 \times \frac{1}{2}=3
$$

Mary practices the piano $\frac{1}{2}$ hour a day for 6 days. How many total hours does she practice?

Decontextualize (Wordsto toumbers)

Reasoning Habits

1) Make an understandable representation of the problem. 3) Pay attention to the meaning of the numbers.

2) Think about the units involved.	4) Use the properties of operations or objects.

Construct viable arguments and critique the reasoning of others.mo...

I can make logical arguments and respond to the mathematical thinking of others.

I can make and present arguments by... and actions

- using examples and non-examples
- relating to contexts

I can analyze the reasoning
of others by...

- listening
- asking and answering questions
- comparing strategies and arguments

Model with mathematics.

I can recognize math in everyday life and use math I know to solve problems.

I can...

Use appropriate tools strategically.

I can use certain tools to help me explore and deepen my math understanding.

- I know HOW and WHEN to use math tools.
- I can reason: "Did the tool I used give me an answer that makes sense?"

Attend to precision.

I can be precise when solving problems and clear when communicating my ideas.

Mathematicians communicate with others using...

L_ units of _
measure

- math vocabulary with clear definitions
- symbols that have meaning
- context labels
- units of measure
- calculations that are accurate and efficient

Look for and make use of structure.

Mathematical Practice 7

I can see and understand how numbers and spaces are organized and put together as parts and wholes.

Numbers

For Example:
I know that $\frac{3}{10}$ is equal to $\frac{30}{100}$.

So, $\frac{3}{10}+\frac{4}{100}=\frac{34}{100}$.
Equivalent Fractions
spaces
For Example:

Lines and Angles

Look for and express regularity in repeated reasoning, nemerana

I can notice when calculations are repeated. Then, I can find more general methods and short cuts.

As I work...

...l think about what I'm trying to figure out while I pay attention to the details
...I evaluate if my results are reasonable.

There are many ways to decompose $\frac{3}{8}$ because it is composed of repeated $\frac{1}{8} \mathrm{~s}$. I CAN.....
....draw a whole and shade in three $\frac{1}{8} s$ parts.
....add eighths.

$$
\frac{3}{8}=\frac{1}{8}+\frac{1}{8}+\frac{1}{8}
$$

....count by eighths. (one-eighth, two eighths, three eighths)

$$
\frac{3}{8}=\frac{1}{8}, \frac{1}{8}, \frac{1}{8}
$$

....jump three $\frac{1}{8}$ size jumps on a number line.

